organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(*E*)-4-Benzenesulfonyl-3-methyl-but-2enyl]-2,3,4,5-tetramethoxy-6-methylbenzene

Quan Li,^a Sheng-Jiao Yan,^a Xin-Rong Lin,^b Cong-Hai Zhang^a and Jun Lin^a*

^aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, (Ministry of Education), Yunnan University, Kunming 650091, People's Republic of China, and ^bCollege of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China Correspondence e-mail: linjun@ynu.edu.cn

Received 2 September 2007; accepted 4 September 2007

Key indicators: single-crystal X-ray study; T = 184 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.138; data-to-parameter ratio = 19.0.

The title compound, $C_{22}H_{28}O_6S$, was prepared as a key intermediate in the synthesis of coenzyme Q_{10} via a Friedel–Crafts reaction. The C=C double bond is *trans* configured. The crystal packing is stabilized by C-H···O contacts.

Related literature

For related literature, see: Min et al. (2003).

Experimental

Crystal data

 $C_{22}H_{28}O_6S$ $V = 2166.9 (2) Å^3$
 $M_r = 420.50$ Z = 4

 Monoclinic, P_{21}/c Mo K α radiation

 a = 9.8351 (6) Å $\mu = 0.18 \text{ mm}^{-1}$

 b = 20.5513 (14) Å T = 184 (2) K

 c = 10.9955 (7) Å $0.31 \times 0.19 \times 0.17 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.945, T_{\rm max} = 0.969$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	268 parameters
$wR(F^2) = 0.138$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
5102 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

17680 measured reflections

 $R_{\rm int} = 0.046$

5102 independent reflections

3755 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C12 $-$ H12 A \cdots O6 ⁱ C19 $-$ H19 C \cdots O6 ⁱⁱ	0.99	2.58 2.56	3.554 (2) 3.305 (3)	168 133
$C22-H22B\cdots O5^{iii}$	0.98	2.26	3.231 (4)	171

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

This project was supported by the 11th five-year construction of teaching contingent in Yunnan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2497).

References

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Min, J. H., Lee, J. S., Yang, J. D. & Koo, S. (2003). J. Org. Chem. 68, 7925–7927.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3998 [doi:10.1107/81600536807043309]

1-[(E)-4-Benzenesulfonyl-3-methyl-but-2-enyl]-2,3,4,5-tetramethoxy-6-methylbenzene

Q. Li, S.-J. Yan, X.-R. Lin, C.-H. Zhang and J. Lin

Comment

Coenzyme Q_{10} plays an essential role in the electron-transfer processes necessary for respiration, and is applied as a drug against many diseases. The title compound is the key intermediate to synthesize coenzyme Q_{10} via a coupling reactions with solanesyl bromide, and it was prepared by coupling tetramethoxytoluene (I) with 4-chioro-2-methyl-1-phenylsulfonyl- 2-butene (II) via Friedel-Crafts reaction.

The crystal packing of the title compound is stabilized by C—H[…]O contacts.

Experimental

2,3,4,5-Tetramethoxytoluene (I) (10 mmol, 1.0 equiv.), and 4-chioro-2- methyl-1-phenylsulfonyl-2-butene (II) (10 mmol, 1.0 equiv.) were stirred in nitromethane (25 ml), then anhydrous zinc chloride (20 mmol) was added and stirred at room temperature for 8 hrs. Water (50 ml) was added to the reaction mixture and stirred for 10 min. The organic layer was separated, dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography to give the title compound (III). The single-crystal of (III) was crystallized in the mixed solvent of petroleum ether and acetone (5:1). MS: 420, m. p. 350 K.

Refinement

All H atoms were placed in idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.96 Å and with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Figures

Fig. 1. View of (III) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

Fig. 2. Reaction scheme illustrating the preparation of the title compound.

1-[(*E*)-4-Benzenesulfonyl-3-methyl-but-2-enyl]-2,3,4,5- tetramethoxy-6-methylbenzene

Crystal data

C ₂₂ H ₂₈ O ₆ S	$D_{\rm x} = 1.289 {\rm ~Mg~m}^{-3}$
$M_r = 420.50$	Melting point: 350 K
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.8351 (6) Å	Cell parameters from 5102 reflections
b = 20.5513 (14) Å	$\theta = 2.0 - 28.3^{\circ}$
c = 10.9955 (7) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 102.8410 \ (10)^{\circ}$	T = 184 (2) K
$V = 2166.9 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.31 \times 0.19 \times 0.17 \text{ mm}$
$F_{000} = 896$	

Data collection

Bruker SMART CCD area-detector diffractometer	5102 independent reflections
Radiation source: fine-focus sealed tube	3755 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 184(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -12 \rightarrow 12$
$T_{\min} = 0.945, T_{\max} = 0.969$	$k = -27 \rightarrow 27$
17680 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.138$	$w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 1.2576P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
5102 reflections	$\Delta \rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$
268 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.29374 (6)	0.26316 (3)	0.94801 (4)	0.03766 (15)
01	0.18082 (16)	0.46913 (7)	0.28067 (16)	0.0444 (4)
02	-0.04892 (17)	0.42801 (8)	0.10933 (13)	0.0458 (4)
O3	-0.26927 (17)	0.36823 (9)	0.18912 (16)	0.0566 (5)
O4	-0.24997 (19)	0.34571 (9)	0.43847 (18)	0.0605 (5)
O5	0.3724 (2)	0.20406 (8)	0.97480 (15)	0.0566 (5)
O6	0.25134 (18)	0.29583 (8)	1.04922 (13)	0.0478 (4)
C1	0.0750 (2)	0.43765 (9)	0.32173 (19)	0.0333 (4)
C2	-0.0431 (2)	0.41838 (10)	0.23398 (18)	0.0332 (4)
C3	-0.1507 (2)	0.38721 (10)	0.27361 (19)	0.0373 (5)
C4	-0.1422 (2)	0.37809 (10)	0.4003 (2)	0.0390 (5)
C5	-0.0264 (2)	0.39874 (10)	0.48855 (19)	0.0385 (5)
C6	0.0848 (2)	0.42754 (10)	0.44898 (19)	0.0371 (5)
C7	0.2138 (3)	0.44833 (13)	0.5409 (2)	0.0565 (7)
H7A	0.1898	0.4818	0.5960	0.085*
H7B	0.2813	0.4660	0.4961	0.085*
H7C	0.2547	0.4108	0.5907	0.085*
C8	-0.0224 (3)	0.38985 (13)	0.6256 (2)	0.0549 (7)
H8A	0.0181	0.4293	0.6712	0.066*
H8B	-0.1191	0.3852	0.6369	0.066*
С9	0.0612 (2)	0.33153 (10)	0.68133 (18)	0.0371 (5)
Н9	0.1258	0.3143	0.6372	0.045*
C10	0.0527 (2)	0.30221 (10)	0.78600 (17)	0.0323 (4)
C11	-0.0446 (3)	0.32196 (14)	0.8673 (2)	0.0526 (6)
H11A	-0.1069	0.3564	0.8259	0.079*
H11B	0.0097	0.3381	0.9474	0.079*
H11C	-0.1000	0.2843	0.8818	0.079*
C12	0.1445 (2)	0.24476 (9)	0.82806 (18)	0.0357 (4)
H12A	0.1759	0.2267	0.7555	0.043*
H12B	0.0891	0.2108	0.8587	0.043*
C13	0.3925 (2)	0.31897 (10)	0.88015 (18)	0.0346 (4)
C14	0.3929 (3)	0.38410 (11)	0.9102 (2)	0.0467 (5)
H14	0.3380	0.3995	0.9652	0.056*

C15	0.4738 (3)	0.42674 (13)	0.8599 (3)	0.0592 (7)
H15	0.4747	0.4717	0.8804	0.071*
C16	0.5532 (3)	0.40439 (14)	0.7800 (3)	0.0561 (7)
H16	0.6092	0.4339	0.7459	0.067*
C17	0.5515 (3)	0.33968 (13)	0.7496 (2)	0.0532 (6)
H17	0.6058	0.3246	0.6939	0.064*
C18	0.4713 (2)	0.29623 (12)	0.7996 (2)	0.0446 (5)
H18	0.4704	0.2514	0.7787	0.054*
C19	0.2678 (3)	0.42452 (12)	0.2322 (3)	0.0550 (7)
H19A	0.3112	0.3940	0.2979	0.082*
H19B	0.3405	0.4488	0.2034	0.082*
H19C	0.2110	0.4003	0.1622	0.082*
C20	-0.1450 (3)	0.47747 (13)	0.0544 (2)	0.0572 (7)
H20A	-0.2390	0.4657	0.0629	0.086*
H20B	-0.1441	0.4817	-0.0342	0.086*
H20C	-0.1178	0.5190	0.0968	0.086*
C21	-0.2566 (3)	0.30972 (14)	0.1250 (3)	0.0644 (7)
H21A	-0.1913	0.3161	0.0704	0.097*
H21B	-0.3480	0.2972	0.0747	0.097*
H21C	-0.2215	0.2753	0.1855	0.097*
C22	-0.3725 (3)	0.38408 (19)	0.4270 (4)	0.0894 (11)
H22A	-0.3517	0.4223	0.4811	0.134*
H22B	-0.4455	0.3582	0.4518	0.134*
H22C	-0.4046	0.3981	0.3402	0.134*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0501 (3)	0.0356 (3)	0.0260 (2)	0.0065 (2)	0.0059 (2)	0.00566 (19)
01	0.0437 (9)	0.0280 (7)	0.0646 (10)	0.0002 (6)	0.0185 (8)	0.0025 (7)
O2	0.0567 (10)	0.0515 (9)	0.0292 (7)	0.0154 (8)	0.0092 (7)	0.0090 (6)
03	0.0386 (9)	0.0654 (11)	0.0579 (11)	-0.0021 (8)	-0.0062 (8)	-0.0105 (9)
04	0.0560 (11)	0.0553 (11)	0.0759 (13)	-0.0043 (9)	0.0269 (9)	0.0145 (9)
05	0.0743 (12)	0.0468 (10)	0.0456 (9)	0.0223 (9)	0.0067 (8)	0.0153 (7)
06	0.0669 (11)	0.0515 (9)	0.0271 (7)	0.0007 (8)	0.0147 (7)	0.0006 (6)
C1	0.0352 (10)	0.0243 (9)	0.0402 (11)	0.0029 (8)	0.0082 (8)	0.0006 (8)
C2	0.0383 (11)	0.0330 (10)	0.0273 (9)	0.0084 (8)	0.0051 (8)	0.0040 (7)
C3	0.0329 (10)	0.0378 (11)	0.0376 (11)	0.0027 (8)	0.0003 (8)	-0.0013 (8)
C4	0.0412 (11)	0.0351 (11)	0.0427 (12)	0.0047 (9)	0.0135 (9)	0.0070 (9)
C5	0.0477 (12)	0.0358 (11)	0.0321 (10)	0.0165 (9)	0.0088 (9)	0.0036 (8)
C6	0.0398 (11)	0.0320 (10)	0.0350 (11)	0.0088 (9)	-0.0018 (9)	-0.0056 (8)
C7	0.0520 (14)	0.0602 (15)	0.0492 (14)	0.0017 (12)	-0.0058 (11)	-0.0216 (12)
C8	0.0729 (17)	0.0610 (15)	0.0325 (11)	0.0353 (13)	0.0157 (11)	0.0078 (10)
C9	0.0432 (12)	0.0409 (11)	0.0279 (10)	0.0110 (9)	0.0096 (8)	-0.0009 (8)
C10	0.0332 (10)	0.0353 (10)	0.0281 (9)	-0.0033 (8)	0.0058 (8)	-0.0031 (8)
C11	0.0487 (14)	0.0724 (17)	0.0420 (13)	0.0064 (12)	0.0212 (11)	0.0019 (12)
C12	0.0477 (12)	0.0295 (10)	0.0313 (10)	-0.0061 (9)	0.0117 (9)	0.0004 (8)
C13	0.0336 (10)	0.0403 (11)	0.0270 (9)	0.0021 (8)	0.0006 (8)	-0.0009 (8)

C14	0.0501 (13)	0.0432 (12)	0.0501 (13)	-0.0005 (10)	0.0181 (11)	-0.0081 (10)
C15	0.0659 (17)	0.0475 (14)	0.0695 (17)	-0.0139 (12)	0.0264 (14)	-0.0151 (12)
C16	0.0503 (14)	0.0646 (16)	0.0561 (15)	-0.0209 (12)	0.0175 (12)	-0.0114 (12)
C17	0.0470 (14)	0.0681 (17)	0.0473 (13)	-0.0065 (12)	0.0167 (11)	-0.0144 (12)
C18	0.0494 (13)	0.0469 (13)	0.0375 (11)	-0.0007 (10)	0.0097 (10)	-0.0105 (9)
C19	0.0483 (14)	0.0399 (12)	0.0847 (19)	0.0056 (11)	0.0320 (13)	0.0089 (12)
C20	0.0610 (16)	0.0620 (16)	0.0449 (13)	0.0159 (13)	0.0037 (12)	0.0211 (12)
C21	0.0631 (17)	0.0601 (16)	0.0614 (17)	-0.0131 (14)	-0.0043 (13)	-0.0123 (13)
C22	0.0576 (19)	0.092 (2)	0.131 (3)	-0.0004 (18)	0.048 (2)	0.020 (2)
Geometric paran	neters (Å °)					
	<i>necers</i> (<i>1</i> , <i>)</i>		G1 0	6 11	1 500	
SI-05		1.4348 (16)	C10-	-CII	1.503	(3)
SI06		1.4385 (16)	CII-	-HIIA	0.980	0
SI-CI3		1.772 (2)	CII-	-HIIB	0.980	0
SI-C12		1.783 (2)	CII—	-HIIC	0.980	0
01—C1		1.384 (2)	C12—	-H12A	0.990	0
O1—C19		1.435 (3)	C12—	-H12B	0.990	0
O2—C2		1.373 (2)	C13—	-C14	1.378	(3)
O2—C20		1.427 (3)	C13—	-C18	1.382	(3)
O3—C3		1.376 (2)	C14—	-C15	1.379	(3)
O3—C21		1.413 (3)	C14—	-H14	0.950	0
O4—C4		1.393 (3)	C15—	-C16	1.378	(4)
O4—C22		1.422 (4)	C15—	-H15	0.950	0
C1—C2		1.393 (3)	C16—	-C17	1.370	(4)
C1—C6		1.396 (3)	C16—	-H16	0.950	0
C2—C3		1.387 (3)	C17—	-C18	1.383	(3)
C3—C4		1.390 (3)	C17—	-H17	0.950	0
C4—C5		1.388 (3)	C18—	-H18	0.950	0
C5—C6		1.396 (3)	C19—	-H19A	0.980	0
C5—C8		1.510 (3)	C19–	-H19B	0.980	0
C6—C7		1.497 (3)	C19–	-H19C	0.980	0
С7—Н7А		0.9800	C20—	-H20A	0.980	0
С7—Н7В		0.9800	C20—	-H20B	0.980	0
C7—H7C		0.9800	C20—	-H20C	0.980	0
C8—C9		1.505 (3)	C21-	-H21A	0.980	0
C8—H8A		0.9900	C21-	-H21B	0.980	0
C8—H8B		0.9900	C21-	-H21C	0.980	0
C9—C10		1.318 (3)	C22—	-H22A	0.980	0
С9—Н9		0.9500	C22—	-H22B	0.980	0
C10—C12		1.496 (3)	C22—	-H22C	0.980	0
O5—S1—O6		118.16 (10)	H11A		109.5	
O5—S1—C13		108.27 (11)	H11B		109.5	
O6—S1—C13		107.70 (10)	C10—	-C12—S1	113.7	4 (14)
O5—S1—C12		106.86 (11)	C10—	-C12—H12A	108.8	
O6—S1—C12		109.80 (10)	S1—0	C12—H12A	108.8	
C13—S1—C12		105.33 (9)	C10—	-C12—H12B	108.8	
C1—O1—C19		112.09 (15)	S1—0	C12—H12B	108.8	
C2—O2—C20		113.69 (17)	H12A	—C12—H12B	107.7	

C3—O3—C21	114.98 (19)	C14—C13—C18	120.7 (2)
C4—O4—C22	113.2 (2)	C14—C13—S1	120.01 (17)
O1—C1—C2	118.63 (18)	C18—C13—S1	119.30 (17)
O1—C1—C6	120.44 (18)	C13—C14—C15	119.5 (2)
C2—C1—C6	120.89 (19)	C13—C14—H14	120.3
O2—C2—C3	120.99 (18)	C15—C14—H14	120.3
O2—C2—C1	119.57 (19)	C16-C15-C14	120.2 (2)
C3—C2—C1	119.38 (18)	C16—C15—H15	119.9
O3—C3—C2	120.66 (19)	C14—C15—H15	119.9
O3—C3—C4	119.4 (2)	C17—C16—C15	120.0 (2)
C2—C3—C4	119.84 (19)	С17—С16—Н16	120.0
C5—C4—C3	121.1 (2)	C15-C16-H16	120.0
C5—C4—O4	119.79 (19)	C16—C17—C18	120.5 (2)
C3—C4—O4	119.1 (2)	С16—С17—Н17	119.8
C4—C5—C6	119.35 (19)	С18—С17—Н17	119.8
C4—C5—C8	119.7 (2)	C13—C18—C17	119.1 (2)
C6—C5—C8	121.0 (2)	C13—C18—H18	120.4
C5—C6—C1	119.39 (19)	C17—C18—H18	120.4
C5—C6—C7	121.0 (2)	O1—C19—H19A	109.5
C1—C6—C7	119.6 (2)	O1—C19—H19B	109.5
С6—С7—Н7А	109.5	H19A—C19—H19B	109.5
С6—С7—Н7В	109.5	O1—C19—H19C	109.5
H7A—C7—H7B	109.5	H19A—C19—H19C	109.5
С6—С7—Н7С	109.5	H19B—C19—H19C	109.5
H7A—C7—H7C	109.5	O2—C20—H20A	109.5
Н7В—С7—Н7С	109.5	O2—C20—H20B	109.5
C9—C8—C5	113.14 (18)	H20A—C20—H20B	109.5
С9—С8—Н8А	109.0	O2—C20—H20C	109.5
С5—С8—Н8А	109.0	H20A-C20-H20C	109.5
С9—С8—Н8В	109.0	H20B-C20-H20C	109.5
С5—С8—Н8В	109.0	O3—C21—H21A	109.5
H8A—C8—H8B	107.8	O3—C21—H21B	109.5
C10—C9—C8	125.77 (19)	H21A—C21—H21B	109.5
С10—С9—Н9	117.1	O3—C21—H21C	109.5
С8—С9—Н9	117.1	H21A—C21—H21C	109.5
C9—C10—C12	118.66 (18)	H21B—C21—H21C	109.5
C9—C10—C11	124.6 (2)	O4—C22—H22A	109.5
C12—C10—C11	116.71 (18)	O4—C22—H22B	109.5
C10—C11—H11A	109.5	H22A—C22—H22B	109.5
C10—C11—H11B	109.5	O4—C22—H22C	109.5
H11A—C11—H11B	109.5	H22A—C22—H22C	109.5
C10—C11—H11C	109.5	H22B—C22—H22C	109.5
C19—O1—C1—C2	-79.7 (2)	O1—C1—C6—C5	176.67 (17)
C19—O1—C1—C6	102.4 (2)	C2—C1—C6—C5	-1.1 (3)
C20—O2—C2—C3	73.4 (3)	O1—C1—C6—C7	-2.7 (3)
C20—O2—C2—C1	-109.4 (2)	C2—C1—C6—C7	179.49 (19)
01—C1—C2—O2	3.2 (3)	C4—C5—C8—C9	99.8 (3)
C6—C1—C2—O2	-178.95 (17)	C6—C5—C8—C9	-80.3 (3)
O1—C1—C2—C3	-179.51 (17)	C5—C8—C9—C10	-160.8 (2)

C6—C1—C2—C3	-1.7 (3)	C8—C9—C10—C12	-179.7 (2)
C21—O3—C3—C2	79.9 (3)	C8—C9—C10—C11	0.8 (4)
C21—O3—C3—C4	-103.6 (3)	C9-C10-C12-S1	101.1 (2)
O2—C2—C3—O3	-3.5 (3)	C11—C10—C12—S1	-79.4 (2)
C1—C2—C3—O3	179.31 (18)	O5—S1—C12—C10	-178.22 (15)
O2—C2—C3—C4	-179.99 (18)	O6—S1—C12—C10	52.48 (17)
C1—C2—C3—C4	2.8 (3)	C13—S1—C12—C10	-63.22 (17)
O3—C3—C4—C5	-177.67 (19)	O5—S1—C13—C14	-141.46 (18)
C2—C3—C4—C5	-1.1 (3)	O6—S1—C13—C14	-12.6 (2)
O3—C3—C4—O4	4.5 (3)	C12—S1—C13—C14	104.51 (19)
C2—C3—C4—O4	-178.90 (19)	O5—S1—C13—C18	37.00 (19)
C22—O4—C4—C5	107.8 (3)	O6—S1—C13—C18	165.83 (17)
C22—O4—C4—C3	-74.4 (3)	C12—S1—C13—C18	-77.03 (18)
C3—C4—C5—C6	-1.7 (3)	C18-C13-C14-C15	-0.5 (4)
O4—C4—C5—C6	176.06 (18)	S1—C13—C14—C15	177.9 (2)
C3—C4—C5—C8	178.20 (19)	C13-C14-C15-C16	0.1 (4)
O4—C4—C5—C8	-4.0 (3)	C14-C15-C16-C17	0.4 (4)
C4—C5—C6—C1	2.8 (3)	C15-C16-C17-C18	-0.6 (4)
C8—C5—C6—C1	-177.12 (18)	C14-C13-C18-C17	0.3 (3)
C4—C5—C6—C7	-177.8 (2)	S1—C13—C18—C17	-178.12 (18)
C8—C5—C6—C7	2.3 (3)	C16-C17-C18-C13	0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C12—H12A···O6 ⁱ	0.99	2.58	3.554 (2)	168
C19—H19C…O6 ⁱⁱ	0.98	2.56	3.305 (3)	133
C22—H22B···O5 ⁱⁱⁱ	0.98	2.26	3.231 (4)	171

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*, *y*, *z*-1; (iii) *x*-1, -*y*+1/2, *z*-1/2.

